Photoreceptor discs form through peripherin-dependent suppression of ciliary ectosome release

نویسندگان

  • Raquel Y Salinas
  • Jillian N Pearring
  • Jin-Dong Ding
  • William J Spencer
  • Ying Hao
  • Vadim Y Arshavsky
چکیده

The primary cilium is a highly conserved organelle housing specialized molecules responsible for receiving and processing extracellular signals. A recently discovered property shared across many cilia is the ability to release small vesicles called ectosomes, which are used for exchanging protein and genetic material among cells. In this study, we report a novel role for ciliary ectosomes in building the elaborate photoreceptor outer segment filled with hundreds of tightly packed "disc" membranes. We demonstrate that the photoreceptor cilium has an innate ability to release massive amounts of ectosomes. However, this process is suppressed by the disc-specific protein peripherin, which enables retained ectosomes to be morphed into discs. This new function of peripherin is performed independently from its well-established role in maintaining the high curvature of disc edges, and each function is fulfilled by a separate part of peripherin's molecule. Our findings explain how the outer segment structure evolved from the primary cilium to provide photoreceptor cells with vast membrane surfaces for efficient light capture.

منابع مشابه

Peripherin diverts ciliary ectosome release to photoreceptor disc morphogenesis

Formation of membrane discs in photoreceptor cells requires evagination of its ciliary plasma membrane by an unknown molecular mechanism. Salinas et al. (2017. J. Cell Biol. https://doi.org/10.1083/jcb.201608081) show that peripherin (also known as peripherin-2 or peripherin-2/rds) diverts membrane traffic to photoreceptor disc formation by inhibiting ectosome release from the cilium.

متن کامل

Comparative Analysis of Ciliary Membranes and Ectosomes

Primary and motile cilia/flagella function as cellular antennae, receiving signals from the environment and subsequently activating signaling pathways that are critical for cellular homeostasis and differentiation [1-3]. Recent work with the green alga Chlamydomonas and the nematode C. elegans demonstrated that ectosomes can be released from the cilium and can mediate the intercellular communic...

متن کامل

RETRACTED: Agonist-Induced GPCR Shedding from the Ciliary Surface Is Dependent on ESCRT-III and VPS4

BACKGROUND Membrane trafficking of G protein-coupled receptors (GPCRs) is crucial for temporal and spatial control of cell-surface GPCR signaling. Receptor internalization is a well-documented method cells use for regulating a wide variety of GPCRs following their exposure to agonists. RESULTS We report that, upon agonist stimulation, a GPCR called vasoactive intestinal peptide receptor 2 (VP...

متن کامل

A Single Valine Residue Plays an Essential Role in Peripherin/rds Targeting to Photoreceptor Outer Segments

Peripherin/retinal degeneration slow (rds) is an integral membrane protein specifically localized to the light-sensing organelle of the photoreceptor cell, the outer segment. Within the outer segment, peripherin is found at the edges of photoreceptor discs, where it plays a critical role in disc morphogenesis and maintenance. Peripherin loss or mutations are often associated with severe forms o...

متن کامل

Uni-directional ciliary membrane protein trafficking by a cytoplasmic retrograde IFT motor and ciliary ectosome shedding

The role of the primary cilium in key signaling pathways depends on dynamic regulation of ciliary membrane protein composition, yet we know little about the motors or membrane events that regulate ciliary membrane protein trafficking in existing organelles. Recently, we showed that cilium-generated signaling in Chlamydomonas induced rapid, anterograde IFT-independent, cytoplasmic microtubule-de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره 216  شماره 

صفحات  -

تاریخ انتشار 2017